AAT
3-2 The Graph-Translation Theorem

Name \qquad
Date \qquad A\#3

Goal: Demonstrate vertical and horizontal translations in a graph.
Warm Up: Compare the graphs of $f(x)=x^{3}$ and $g(x)-25=(x-12)^{3}$. Find the coordinates of a point on each graph.

The Translation Image of a Graph
A transformation is \qquad The four types are
\qquad . Today we will focus on the first, which can
simply be described as \qquad . In a transformation, one set, the \qquad is mapped to another set, the \qquad .

Graph $f(x)=\sqrt{x}$ and $g(x)=\sqrt{x}+5$ on the same coordinate plane.
Also, complete the table.

x	$f(x)$	$g(x)$
1		
2		
3		
4		
5		

The translation can be written as \qquad or , which is read " (x, y) is mapped to $(x, y+5) . "$

Definition of Translation

A translation in the plane is a transformation that maps each point (x, y) onto ($x+h, y+k$), where h and k are constant.

Questions

Example 1: Under a translation, the image of $(0,0)$ is $(-12,5)$. Find a rule for this translation. Then find the image of $(6,-10)$ under this translation.

Graph-Translation Theorem

Given a preimage graph described by a sentence in x and y, the following two processes yield the same image:
(1) replacing x by $x-h$ and y by $y-k$ in the sentence;
(2) applying the translation $(x, y) \rightarrow(x+h, y+k)$ to the preimage graph.

Example 2
a. Compare the graphs of $y=x^{3}+1$ and $y=(x+4.2)^{3}-5$.
b. Find the coordinates of a point on one graph and its corresponding image on the second graph.
c. What is the image of $(0,0)$ under the translation that maps the first graph to the second graph?

Example 3
If the graph of $y=-\frac{1}{2 x^{2}}$ is translated 8 units up and 17 units to the left, what is an equation for its image?

Summary:

